skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "D., Robert Moser"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A direct numerical simulation of incompressible channel flow at a friction Reynolds number (Reτ) of 5186 has been performed, and the flow exhibits a number of the characteristics of high-Reynolds-number wall-bounded turbulent flows. For example, a region where the mean velocity has a logarithmic variation is observed, with von Kármán constant k = 0.384 ± 0.004. There is also a logarithmic dependence of the variance of the spanwise velocity component, though not the streamwise component. A distinct separation of scales exists between the large outer-layer structures and small inner-layer structures. At intermediate distances from the wall, the one-dimensional spectrum of the streamwise velocity fluctuation in both the streamwise and spanwise directions exhibits k-1 dependence over a short range in wavenumber (k) . Further, consistent with previous experimental observations, when these spectra are multiplied by k (premultiplied spectra), they have a bimodal structure with local peaks located at wavenumbers on either side of the k-1 range. 
    more » « less
  2. The turbulent channel flow database is produced from a direct numerical simulation (DNS) of wall bounded flow with periodic boundary conditions in the longitudinal and transverse directions, and no-slip conditions at the top and bottom walls. In the simulation, the Navier-Stokes equations are solved using a wall {normal, velocity {vorticity formulation. Solutions to the governing equations are provided using a Fourier-Galerkin pseudo-spectral method for the longitudinal and transverse directions and seventh-order Basis-splines (B-splines) collocation method in the wall normal direction. De-aliasing is performed using the 3/2-rule [3]. Temporal integration is performed using a low-storage, third-order Runge-Kutta method. Initially, the flow is driven using a constant volume flux control (imposing a bulk channel mean velocity of U = 1) until stationary conditions are reached. Then the control is changed to a constant applied mean pressure gradient forcing term equivalent to the shear stress resulting from the prior steps. Additional iterations are then performed to further achieve statistical stationarity before outputting fields. 
    more » « less